翻訳と辞書
Words near each other
・ Lady Washington Inn
・ Lady Well
・ Lady Whirlwind
・ Lady Whitehouse
・ Lady Wigram Trophy
・ Lady William Russell
・ Lady Williams (apple)
・ Lady Willingdon Hospital
・ Lady Willpower
・ Lady Wimborne Bridge
・ Lady Windermere's Fan
・ Lady Windermere's Fan (1916 film)
・ Lady Windermere's Fan (1925 film)
・ Lady Windermere's Fan (1935 film)
・ Lady Windermere's Fan (1944 film)
Lady Windermere's Fan (mathematics)
・ Lady Windsor Colliery
・ Lady with a Past
・ Lady with an Ermine
・ Lady with Red Hair
・ Lady with the Light Gloves
・ Lady with the Ring
・ Lady with the Small Foot
・ Lady Wonder
・ Lady Worsley
・ Lady Writer
・ Lady Writing a Letter with her Maid
・ Lady Wu
・ Lady Wu (Qian Liu's wife)
・ Lady Wu (Sun Jian's wife)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lady Windermere's Fan (mathematics) : ウィキペディア英語版
Lady Windermere's Fan (mathematics)
In mathematics, Lady Windermere's Fan is a telescopic identity employed to relate global and local error of a numerical algorithm. The name is derived from Oscar Wilde's play Lady Windermere's Fan, A Play About a Good Woman.
==Lady Windermere's Fan for a function of one variable==
Let E(\ \tau,t_0,y(t_0)\ ) be the exact solution operator so that:
::y(t_0+\tau) = E(\tau,t_0,y(t_0))\ y(t_0)
with t_0 denoting the initial time and y(t) the function to be approximated with a given y(t_0).
Further let y_n, n \in \N,\ n\le N be the numerical approximation at time t_n, t_0 < t_n \le T = t_N. y_n can be attained by means of the approximation operator \Phi(\ h_n,t_n,y(t_n)\ ) so that:
::y_n = \Phi(\ h_,t_,y(t_)\ )\ y_\quad with h_n = t_ - t_n
The approximation operator represents the numerical scheme used. For a simple explicit forward euler scheme with step witdth h this would be: \Phi_,y(t_)\ )\ y(t_) = (1 + h \frac)\ y(t_)
The local error d_n is then given by:
::d_n:= D(\ h_,t_,y(t_\ )\ y_ := \left(\Phi(\ h_,t_,y(t_)\ ) - E(\ h_,t_,y(t_)\ ) \right )\ y_
In abbreviation we write:
::\Phi(h_n) := \Phi(\ h_n,t_n,y(t_n)\ )
::E(h_n) := E(\ h_n,t_n,y(t_n)\ )
::D(h_n) := D(\ h_n,t_n,y(t_n)\ )
Then Lady Windermere's Fan for a function of a single variable t writes as:
y_N-y(t_N) = \prod_^\Phi(h_j)\ (y_0-y(t_0)) + \sum_^N\ \prod_^ \Phi(h_j)\ d_n
with a global error of y_N-y(t_N)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lady Windermere's Fan (mathematics)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.